تبلیغات
علم - آنالیز

علم

چهارشنبه 2 دی 1388

آنالیز

نویسنده: parsa   طبقه بندی: *ریاضی*، 

آنالیز شاخه ای از ریاضیات است که با اعداد حقیقی و اعداد مختلط و نیز توابع حقیقی و مختلط سر و کار دارد و به بررسی مفاهیمی از قبیل پیوستگی ،انتگرال گیری و مشق پذیری می پردازد.





دنباله ای از توابع پیوسته مانند در فضای R که به صفر همگراست

تاریخچه

از نظر تاریخی آنالیز در قرن هفدهم با ابداع حساب دیفرانسیل و انتگرال توسط نیوتن و لایپ نیتس پایه ریزی شد در قرن هفدهم و هجدهم سر فصل های آنالیزی از قبیل حساب تغییرات،معادلات دیفرانسیل با مشتقات جزئی، آنالیز فوریه در زمینه های کاربردی توسعه فراوانی یافتند و از آنها به طور موفقیت آمیز در زمینه های صنعتی استفاده شد. در قرن هجدهم تعریف مفهوم تابع به یک موضوع بحث بر انگیز در ریاضیات تبدیل شد. در قرن نوزدهم کوشی با معرفی مفهوم سری های کوشی اولین کسی بود که حساب دیفرانسیل و انتگرال را بر یک پایه منطقی استوار کرد..

در اواسط قرن نوزدهم ریمان تئوری انتگرال گیری خود را که به انتگرال ریمان معروف است ارائه داد در اواخر قرن نوزدهم وایراشتراس مفهوم حد را معرفی کرد و نتایج کار خود بر روی سریها را نیز ارائه داد در همین دوران ریاضیدانان با تلاش های زیاد توانستند انتگرال ریمان را اصلاح نمایند .
در اوایل قرن بیستم هیلبرت برای حل معادلات انتگرال فضای هیلبرتی را تعریف و معرفی نمود.از آخرین تحولات در زمینه آنالیز می توان به پایه گذاری آنالیز تابعی توسط یک دانشمند لهستانی به نام باناچ نام برد.


تقسیم بندی آنالیز

آنالیز حقیقی: به مطالعه بر روی حد ها ،مشتقات،انتگرال ها سریهای توانی می پردازد.

آنالیز تابعی: به معرفی نظریه هایی از قبیل فضاهای باناچ و نیز فضای هیلبرت می پردازد.

آنالیز هارمونیک: در این شاخه از آنالیز سری های فوریه مورد مطالعه قرار می گیرد.

آنالیز مختلط: به بررسی توابع مختلط و خواص این توابع از قبیل مشتق پذیری و انتگرال گیری می پردازد.



آنالیز عددی

آنالیز عددی الگوریتم حل مسئله در ریاضیات پیوسته(ریاضیاتی که جدا از ریاضیات گسسته است)را مورد مطالعه قرار میدهد. آنالیز عددی اساسا به مسائل مربوط به متغیرهای حقیقی و متغیرهای مختلط و نیز جبر خطی عددی به علاوه حل معادلات دیفرانسیل و دیگر مسائلی که از فیزیک و مهندسی مشتق میشود.

معرفی

تعدادی از مسائل در ریاضیات پیوسته دقیقا با یک الگوریتم حل میشوند.که به روش های مستقیم حل مسئله معروف اند.برای مثال روش حذف گائوسی برای حل دستگاه معادلات خطی است و نیز روش سیمپلکس در برنامه ریزی خطی مورد استفاده قرار میگیرد. ولی روش مستقیم برای حل خیلی از مسائل وجود ندارد.و ممکن است از روشهای دیگر مانند روش تکرارشونده استفاده شود،چون این روش میتواند در یافتن جواب مسئله موثرتر باشد.


تخمین زدن خطاها

تخمین خطاهای موجود در حل مسائل از مهمترین قسمت های آنالیز عددی است این خطاها در روش های تکرار شونده وجود دارد چون به هرحال جوابهای تقریبی بدست آمده با جواب دقیق مسئله، اختلاف دارد و یا وقتی که از روش های مستقیم برای حل مسئله استفاده می شود خطاهایی ناشی از گرد کردن اعداد بوجود می آید. در آنالیز عددی می توان مقدار خطا را در خر روش که برای حل مسئله به کار می رود، تخمین زد .


کاربردها

الگوریتم های موجود در آنالیز عددی برای حل بسیاری از مسائل موجود در علوم پایه و رشته های مهندسی مورد استفاده قرار می گیرند. برای مثال از این الگوریتم ها در طراحی بناهایی مانند پل ها، در طراحی هواپیما ، در پیش بینی آب و هوا، تهیه نقشه های جوی از زمین، تجزیه و تحلیل ساختار مولکول ها، پیدا کردن مخازن نفت، استفاده می شود، همچنین اکثر ابر رایانه ها به طور مداوم بر اساس الگوریتم های آنالیز عددی برنامه ریزی می شوند. به طور کلی آنالیز عددی از نتایج عملی حاصل از اجرای محاسبات برای پیدا کردن روش های جدید برای تجزیه و تحلیل مسائل، استفاده می کند.

آنالیز ریاضی

آنالیز نام عمومی آن بخش‌هائی از ریاضیات است که با مفاهیم حد و همگرایی مربوط‌اند و در آن‌ها موضوعاتی مثل پیوستگی و انتگرال‌گیری و مشتق‌پذیری و توابع غیرجبری بررسی می‌شود. این موضوعات را معمولاً در عرصه اعداد حقیقی یا اعداد مختلط و توابع مربوط به آن‌ها بحث می‌کنند ولی می‌توان آنها را در هر فضائی از موجودات ریاضی که در آن مفهوم "نزدیکی" (فضای توپولوژیک) یا "فاصله" (فضای متریک) وجود دارد به‌کار برد. آنالیز ریاضی از کوشش‌های مربوط به دقیق کردن مبانی و تعریف‌های حسابان سر برآورده است.

* انالیز ریاضی در واقع به نقاط استثنایی ریاضیات می‌پردازد . کلمه انالیز به همین معنی [: نقاط استثنایی] است .

مثلا در مورد انتگرال،انتگرال معمولی به انتگرال ریمان-اشتیل یس و انتگرال لبگ تعمیم می‌یابد. آنالیز ریاضی زمینه‌ای ظریف و دقیق است.در واقع حسابان قسمت کاربردی و بدون در نظر گرفتن جزییات آنالیز محسوب می‌شود.


آنالیز ریاضی دارای چندین زیر‌شاخه به این شرح‌ست:

* آنالیز حقیقی
* آنالیز مختلط
* آنالیز عددی
* آنالیز تابعی
* آنالیز هارمونیک
* آنالیز غیر‌استاندارد

نظرات() 
feet pain
دوشنبه 27 شهریور 1396 05:47 ق.ظ
Excellent post. I was checking constantly this blog and I am impressed!
Extremely useful information specially the last part :) I care for
such information a lot. I was looking for this particular information for a very long time.

Thank you and best of luck.
How long do you grow during puberty?
شنبه 4 شهریور 1396 03:48 ب.ظ
Wow, that's what I was searching for, what a data!
present here at this webpage, thanks admin of this website.
How much does it cost for leg lengthening?
جمعه 3 شهریور 1396 04:45 ب.ظ
Hello there! This is my first visit to your blog! We are a collection of volunteers and starting a new project in a community in the same niche.

Your blog provided us useful information to work on. You have done a wonderful job!
nobukodoudna.wordpress.com
شنبه 14 مرداد 1396 08:07 ق.ظ
I don't know if it's just me or if everyone else encountering problems with your
website. It looks like some of the text on your posts are running off the screen. Can someone else please
comment and let me know if this is happening to
them too? This could be a problem with my browser
because I've had this happen before. Appreciate it
BHW
پنجشنبه 24 فروردین 1396 09:28 ب.ظ
Hello would you mind letting me know which hosting company you're
utilizing? I've loaded your blog in 3 completely
different browsers and I must say this blog loads a
lot quicker then most. Can you suggest a good internet hosting provider at a honest price?
Thanks a lot, I appreciate it!
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر

آمار وبلاگ

  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :